Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 10(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38534625

RESUMO

Meloxicam (MX) is a poorly water-soluble drug with severe gastrointestinal side effects. Topical hydrogel of hydroxypropyl guar (HPG) was formulated using a solid dispersion (SD) of MX with hydroxypropyl cellulose (LHPC) as an alternative to oral administration. The development of a solid dispersion with an adequate MX:LHPC ratio could increase the topical delivery of meloxicam. Solid dispersions showed high MX solubility values and were related to an increase in hydrophilicity. The drug/polymer and polymer/polymer interactions of solid dispersions within the HPG hydrogels were evaluated by SEM, DSC, FTIR, and viscosity studies. A porous structure was observed in the solid dispersion hydrogel MX:LHPC (1:2.5) and its higher viscosity was related to a high increase in hydrogen bonds among the -OH groups from LHPC and HPG with water molecules. In vitro drug release studies showed increases of 3.20 and 3.97-fold for hydrogels with MX:LHPC ratios of (1:1) and (1:2.5), respectively, at 2 h compared to hydrogel with pure MX. Finally, a fitting transition from zero to first-order model was observed for these hydrogels containing solid dispersions, while the n value of Korsmeyer-Peppas model indicated that release mechanism is governed by diffusion through an important relaxation of the polymer.

2.
Heliyon ; 10(2): e24284, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293450

RESUMO

Ferric hexacyanoferrate, Fe4 [Fe(CN)6]3 · xH2O, known as Prussian blue (PB), has proven its effectiveness as an antidote in cases of accidental poisoning or poisoning caused by radioactive materials such as cesium (Cs) and thallium (Tl); which due to their solubility in water, when absorbed by the human body, cause serious damage to vital organs. The local development of a drug with PB as an active ingredient arises as a response to the civil and military needs established within the Ministry's pharmacy request for national defense. This fact contemplates the circumstances related to public health protection in the nuclear, radiological, biological and chemical (NRBQ) of the emergency institutions in health and national security. In this paper and by using various analytical techniques, the characterization of the locally synthesized PB with pharmaceutical quality has been described, as a first step to predict its behavior in the preparation of a drug that contains it as an active ingredient. The research findings demonstrate that locally synthesized PB is suitable for use in oral dosage forms, enabling the local development of drug formulations incorporating PB, thus being able to potentially become a main resource in the treatment of Cs and Tl poisoning in any accidental or intended of the population. This development opens up the possibility of creating drug formulations that incorporate PB at a local level, making it a potentially significant resource in the treatment of Cs and Tl poisoning. The ability to locally produce and utilize PB in oral dosage forms could be crucial in addressing cases of accidental or intentional exposure within the population. This advancement not only contributes to the scientific understanding of PB but also holds promising implications for practical applications in public health and emergency situations.

3.
Polymers (Basel) ; 15(20)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37896428

RESUMO

Simvastatin (SIM) is a potent lipid-lowering drug used to control hyper-cholesterolemia and prevent cardiovascular diseases. SIM presents low oral bioavailability (5%) because of its low aqueous solubility. In this work, polyelectrolyte complexes (PEC) are developed with different chitosan (CS) and carboxymethylcellulose (CMC) ratios that will allow for an increase in the SIM dissolution rate (2.54-fold) in simulated intestinal medium (pH 4.5). Scanning Electron Microscopy (SEM) images revealed highly porous structures. The changes between both complexes, PEC-SIM:CS:CMC (1:1:2) and (1:2:1), were related to the relaxation of the polymer chains upon absorption of the dissolution medium. Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and powder X-ray diffraction (XRPD) studies were used to evaluate the polymer/polymer and drug/polymer interactions on the different PEC-SIM:CS:CMC ratios. In addition, the PEC-SIM:CS:CMC (1:2:1) complex exhibited a high ratio of protonated amino groups (NH3+) and an increase in intramolecular hydrogen bonds, which were correlated with a high expansion of the interpolymer chains and an increase in the SIM dissolution rate. Different kinetic models such as zero-order, first-order, Higuchi and Korsmeyer-Peppas were studied to evaluate the influence of CS/CMC ionic interactions on the ability to improve the release rate of poorly soluble drugs.

4.
Int J Pharm ; 631: 122520, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36581105

RESUMO

Atorvastatin is a potent lipid-lowering drug with poor solubility and high presystemic clearance that limits its therapeutic efficacy. The aim of this study was to develop solid dispersions and micellar systems to obtain fast-dissolving atorvastatin systems that enhances their anti-hyperlipidemic effect. Solubility and wettability studies allow the development of solid dispersions with low proportions of croscarmellose sodium as hydrophilic carrier. Solid state characterization studies indicated that the addition of Kolliphor® RH40 surfactant to solid dispersions increases intermolecular hydrogen bonding between drug and polymer chains. Dissolution studies in biorelevant Fasted State Simulate Intestinal Fluid (FaSSIF pH 6.5) medium showed for atorvastatin solid dispersion a supersaturation peak of atorvastatin followed by an aggregation/precipitation process. Only the presence of a surfactant such as Kolliphor® RH40 in atorvastatin micellar system, promotes the presence of micelles that achieve delayed recrystallization. Efficacy studies were carried out using a hyperlipidemic model of rats fed with a high- fat diet. The atorvastatin micellar system at doses of 10 mg/kg, revealed a significant improvement in serum levels of total cholesterol, low-density lipoproteins, and triglycerides compared to atorvastatin raw material. This micellar system also exhibited more beneficial effects on liver steatosis, inflammation and ballooning injury.


Assuntos
Polímeros , Tensoativos , Ratos , Animais , Atorvastatina , Solubilidade , Triglicerídeos
5.
Pharmaceutics ; 14(7)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35890399

RESUMO

The aim of this research is the development of new colonic release systems of meloxicam (MLX) a non-steroidal anti-inflammatory drug (NSAIDs) with pH and time-dependent vehicles for cancer or autoimmune diseases. The colon has a higher pH than the rest of the gastrointestinal tract (GIT) and this can be used as a modified release strategy. Eudragit® polymers are the most widely used synthetic products in the design of colonic release formulations because they might offer mucoadhesiveness and pH-dependent release. Colonic delivery systems produced with pH-dependent and permeable polymers (FS-30D) or with pH-independent and low permeability polymers (NM-30D), must dissolve at a pH range of 6.0-7.0 to delay the release of the drug and prevent degradation in the GIT, before reaching the colon. The conditions prepared to simulate a gastrointestinal transit showed the CNM multiparticulate system, composed of Eudragit® NM and cellulose, as the best release option for MLX with a more sustained release with respect to the other formulations. CNM formulation followed Higuchi and First-order release kinetics, thus MLX release was controlled by a combination of diffusion and polymers swelling/eroding processes.

6.
Pharmaceutics ; 14(3)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35336032

RESUMO

Low amounts of minoxidil in oral dosage forms are commonly prescribed as anti-alopecic pharmacological treatments. Side effects are usually related to individual susceptibility. However, poor drug content and mass uniformity can lead to a potential risk of overdosing, and higher chances to experience side effects. The impacts of four formulation variables on drug content and mass pharmaceutical quality attributes were studied with an experimental design at two levels. The first variable (A) was the particle size of the direct compression microcrystalline cellulose (MCC) used as a diluent (Avicel® PH 101 vs. LP 200). The second variable (B) was the type of production process (direct filling vs. wet granulation). The third variable (C) was the particle size of riboflavin added as a color mixture indicator agent (granular vs. milled). The fourth variable (D) was the type of oral solid dosage form (capsule vs. tablet). In half of the formulations, the mean minoxidil content and minoxidil uniformity were out of the specification limits of the Pharmacopoeia, demonstrating the importance of carefully selecting the excipients as well as the utilized process when manufacturing low oral dosage minoxidil formulations. The best minoxidil content uniformity was achieved when using MCC LP 200, wet granulation, granular riboflavin, and capsules. However, tablets are the recommended dosage form when utilizing Avicel® PH 101 or direct filling. Meeting these criteria, the content and mass uniformity are more likely to meet the specification limits of the Pharmacopeia. Techniques such as NIR spectroscopy should be implemented to control the quality of extemporaneous compounding formulations with a low dose of active ingredient.

7.
Polymers (Basel) ; 13(16)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34451351

RESUMO

This study investigated the combination of different proportions of cationic chitosan and anionic carboxymethyl cellulose (CMC) for the development of polyelectrolyte complexes to be used as a carrier in a sustained-release system. Analysis via scanning electron microscopy (SEM) Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD) confirmed ionic interactions occur between the chitosan and carboxymethyl cellulose chains, which increases drug entrapment. The results of the dissolution study in acetate buffer (pH 4.2) showed significant increases in the kinetic profiles of clarithromycin for low proportions of chitosan/carboxymethyl cellulose tablets, while the tablets containing only chitosan had high relaxation of chitosan chains and disintegrated rapidly. The Korsmeyer-Peppas kinetic model for the different interpolymer complexes demonstrated that the clarithromycin transport mechanism was controlled by Fickian diffusion. These results suggest that the matrix tablets with different proportions of chitosan/carboxymethyl cellulose enhanced the ionic interaction and enabled the prolonged release of clarithromycin.

8.
Pharmaceuticals (Basel) ; 14(5)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922089

RESUMO

The aim of this study was to improve the treatment of Candida albicans biofilms through the use of nystatin solid dispersions developed using maltodextrins as a hyperosmotic carrier. Characterization studies by differential scanning calorimetry, X-ray diffraction, dissolution studies, and particle size analysis were performed to evaluate changes in nystatin crystallinity. Antifungal activity and anti-biofilm efficacy were assessed by microbiological techniques. The results for nystatin solid dispersions showed that the enhancement of antifungal activity may be related to the high proportions of maltodextrins. Anti-biofilm assays showed a significant reduction (more than 80%) on biofilm formation with SD-N:MD [1:6] compared to the nystatin reference suspension. The elaboration process and physicochemical properties of SD-N:MD [1:6] could be a promising strategy for treatment of Candida biofilms.

9.
Pharmaceutics ; 13(3)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804727

RESUMO

The aim of this study was to develop multiparticulate systems with a combination of ezetimibe micellar systems and atorvastatin solid dispersions using croscarmellose as a hydrophilic vehicle and Kolliphor RH40 as a surfactant. The presence of a surfactant with low hydrophilic polymer ratios produces the rapid dissolution of ezetimibe through a drug-polymer interaction that reduces its crystallinity. The solid dispersion of atorvastatin with low proportions of croscarmellose showed drug-polymer interactions sufficient to produce the fast dissolution of atorvastatin. Efficacy studies were performed in diabetic Goto-Kakizaki rats with induced hyperlipidemia. The administration of multiparticulate systems of ezetimibe and atorvastatin at low (2 and 6.7 mg/kg) and high (3 and 10 mg/kg) doses showed similar improvements in levels of cholesterol, triglycerides, lipoproteins, alanine transaminase, and aspartate transaminase compared to the high-fat diet group. Multiparticulate systems at low doses (2 and 6.7 mg/kg of ezetimibe and atorvastatin) had a similar improvement in hepatic steatosis compared to the administration of ezetimibe and atorvastatin raw materials at high doses (3 and 10 mg/kg). These results confirm the effectiveness of solid dispersions with low doses of ezetimibe and atorvastatin to reduce high lipid levels and hepatic steatosis in diabetic rats fed a high-fat diet.

10.
Pharmaceutics ; 12(7)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630626

RESUMO

Ezetimibe (EZ) is a poorly water-soluble drug with low bioavailability. Strategies such as solid dispersions (SD) and micellar systems (MS) were developed to identify the most effective drug delivery formulations with the highest oral bioavailability, and to improve their lipid-lowering effect. The EZ formulations were prepared with different proportions of Kolliphor® RH40 as a surfactant (1:0.25, 1:0.5 and 1:0.75) and croscarmellose as a hydrophilic carrier. These excipients, and the addition of microcrystalline cellulose during the production process, led to significant improvements in the dissolution profiles of MS. Powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) revealed an amorphous form of ezetimibe with different semicrystalline states of microcrystalline cellulose for MS-I (1:0.75) and MS-II (1:0.75). Pharmacokinetic analysis after administration of MS-II (1:0.75) demonstrated a 173.86% increase in maximum plasma concentration (Cmax) and a 142.99% increase in oral bioavailability compared to EZ raw material (EZ-RM). Efficacy studies with the micellar system MS-II (1:0.75) in rats with hyperlipidemia showed that total cholesterol, triglycerides and high-density lipoprotein were reduced to normal levels and revealed improvements in low-density lipoprotein, aspartate and alanine aminotransferase. The improvement in the dissolution rate with micellar systems increases bioavailability and enhances the anti-hyperlipidemic effect of EZ.

11.
Colloids Surf B Biointerfaces ; 193: 111119, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32464356

RESUMO

Voriconazole (VCZ) is currently the first-line treatment for invasive aspergillosis, although the doses are limited by its poor solubility and high hepatic toxicity. The aim of this study was to develop a solid self-dispersing micellar system of VCZ to improve the pharmacokinetic/pharmacodynamic (PK/PD) relationship and reduce hepatotoxicity. In this work, solid micellar systems of VCZ are formulated with different polysorbate 80 ratios using mannitol as a hydrophilic carrier. The novel micellar systems were characterized by scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and dissolution studies. Self-dispersing micellar systems reduced VCZ crystallinity, leading to an improvement in its dissolution rate. The in vitro susceptibility test also revealed that the most common microorganisms in invasive aspergillosis exhibited low minimum inhibitory concentration (MIC) values for micellar systems. Pharmacokinetic studies indicated an improvement in bioavailability for MS-1:3:0.05, and changes in its biodistribution to different organs. MS-1:3:0.05 showed an increased concentration in lungs and a significant decrease in VCZ accumulated in the liver.


Assuntos
Antifúngicos/farmacologia , Aspergilose/tratamento farmacológico , Aspergillus/efeitos dos fármacos , Voriconazol/farmacologia , Animais , Antifúngicos/química , Antifúngicos/toxicidade , Composição de Medicamentos , Liberação Controlada de Fármacos , Masculino , Manitol/química , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Polissorbatos/química , Ratos , Ratos Wistar , Propriedades de Superfície , Distribuição Tecidual , Voriconazol/química , Voriconazol/toxicidade
12.
Pharmaceutics ; 11(12)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31817021

RESUMO

The aim of this work was to develop ezetimibe self-micellizing solid dispersions using Kolliphor® RH40 (MS-K) as a surfactant incorporating ezetimibe (EZ) into the croscarmellose hydrophilic carrier. Different ezetimibe:Kolliphor® ratios were studied to select micellar systems that improve the dissolution properties of ezetimibe. The different formulations were characterized by means of solid state analysis by SEM, powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), and dissolution studies. These physicochemical studies showed a decrease from the crystalline structure of ezetimibe (EZ) to its amorphous state in the micellar systems (MS-K). A rapid dissolution profile was observed in these micellar systems compared to the drug raw material and physical mixture. Efficacy studies were conducted using a high-fat diet that induced hyperlipidemic rats. The micellar system selected (MS-K 1:0.75) revealed a significant improvement in serum levels of total cholesterol (TC), low-density lipoproteins (LDL), and triglycerides (TG) compared to ezetimibe raw material. The histopathological examination of liver tissue also showed that this micellar system exhibited more beneficial effects on liver steatosis compared to ezetimibe raw material (EZ-RM) and the high-fat diet group (HFD). This study suggests that EZ micellar systems using Kolliphor® RH40 could enhance the antihyperlipidemic effect of ezetimibe and reduce liver steatosis.

13.
J Sep Sci ; 42(9): 1702-1709, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30809939

RESUMO

Rapid, simple, and sensitive submicellar liquid chromatography with fluorescence detection was developed and validated to quantify naproxen in plasma and brain samples after oral administration of Naproxen formulations. The method used tramadol as an internal standard. Different submicellar mobile phases with organic phases ranging from 40 to 60% were studied to improve the native fluorescence of the Naproxen and decrease retention times. Separation was done in a Zorbax SB C8 column (250 × 4.6 mm, 5 µm) with a mobile phase containing acidic 0.007 M sodium dodecyl sulfate/acetonitrile (50:50, v/v) at a flow rate of 1 mL/min. Detection was performed with an excitation wavelength of 280 nm and emission of 310 nm and 360 nm for internal standard and Naproxen, respectively. The method was validated by International Conference of Harmonization standards. The method is specific, accurate, and precise (relative standard deviation <3%). Limits of detection and quantification were 0.08 and 0.25 µg/mL, respectively, for biological samples. This method was applied to analyze brain/plasma ratios in mice that had received oral administrations of Naproxen micellar formulations containing 10% w/w of sodium dodecyl sulfate, Cremophor RH 40, or Tween 80. The sodium dodecyl sulfate micelles were faster and more widely distributed in the mouse brains.


Assuntos
Anti-Inflamatórios/análise , Química Encefálica , Cromatografia Líquida/métodos , Naproxeno/análise , Plasma/química , Animais , Anti-Inflamatórios/sangue , Cromatografia Líquida/instrumentação , Fluorescência , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Naproxeno/sangue
14.
Artigo em Inglês | MEDLINE | ID: mdl-29760126

RESUMO

An experimental micellar formulation of 1:1.5 amphotericin B-sodium deoxycholate (AMB:DCH 1:1.5) was obtained and characterized to determine its aggregation state and particle size. The biodistribution, nephrotoxicity, and efficacy against pulmonary aspergillosis in a murine model were studied and compared to the liposomal commercial formulation of amphotericin B after intravenous administration. The administration of 5 mg/kg AMB:DCH 1:1.5 presented 2.8-fold-higher lung concentrations (18.125 ± 3.985 µg/g after 6 daily doses) and lower kidney exposure (0.391 ± 0.167 µg/g) than liposomal commercial amphotericin B (6.567 ± 1.536 and 5.374 ± 1.157 µg/g in lungs and kidneys, respectively). The different biodistribution of AMB:DCH micelle systems compared to liposomal commercial amphotericin B was attributed to their different morphologies and particle sizes. The efficacy study has shown that both drugs administered at 5 mg/kg produced similar survival percentages and reductions of fungal burden. A slightly lower nephrotoxicity, associated with amphotericin B, was observed with AMB:DCH 1:1.5 than the one induced by the liposomal commercial formulation. However, AMB:DCH 1:1.5 reached higher AMB concentrations in lungs, which could represent a therapeutic advantage over liposomal commercial amphotericin B-based treatment of pulmonary aspergillosis. These results are encouraging to explore the usefulness of AMB:DCH 1:1.5 against this disease.


Assuntos
Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Ácido Desoxicólico/farmacologia , Ácido Desoxicólico/uso terapêutico , Rim/efeitos dos fármacos , Rim/metabolismo , Aspergilose Pulmonar/tratamento farmacológico , Aspergilose Pulmonar/metabolismo , Animais , Combinação de Medicamentos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...